笔趣阁 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

涉及到文本摘要方面的研究其实有很长的历史了。

东方对于文本摘要的研究是什么状况此前伊芙·卡莉不是很清楚。

但来到中国之后,伊芙·卡莉通过一些麻省理工学院同中国友好合作的机构才了解到。

广泛意义上的文本摘要这方面中国虽然似乎没啥项目。

但涉及到纯粹的中文文本处理这个古老的东方国度不但有专门的项目。

甚至于有的还被863计划这样的国家级计划所涵盖。

863计划,顾名思义自然是在86年3月开始执行的。

当时第一次听说不少涉及到文本摘要的项目甚至于早在上世纪末期就开始了。

伊芙·卡莉是震撼的。

甚至细思之下,伊芙·卡莉觉得比较恐怖。

都已经是2014年了,居然还有一个近乎于三十年前开始的计划在按部就班地向前推进。

做计划不难,难的是计划的执行力度。

就这份三十年前确定的计划的执行力度可以说世界范围内也是没谁了。

总之伊芙·卡莉觉得这在频繁两挡交替的美国几乎是难以想象的事情。

不过仅仅是文本摘要这方面。

伊芙·卡莉还不至于太悲观。

毕竟西方在文本摘要这方面一样是倾注了大量心血。

甚至于要远比华国在这方面开始的研究还早。

伊芙·卡莉记得此前还在学生时代的时候就听闻西方关于文本摘要这方面的研究在冷/战初期就已经开始了。

最早进行这方面工作的是诸如斯坦福大学、麻省理工学院之类的这些学校。

不过当时这些学校背后的幕后雇主是美国的五/角/大楼。

听起来很奇怪,但并不奇怪。

事实如此,现在人类互联网以及计算机方面各种各样的技术最初都和军方有着千丝万缕的联系。

甚至于不少技术几乎就是纯粹的军转民。

涉及到文本摘要这个方向。

之所以当初当时进行文本摘要这方面的研究是旨在通过在文本摘要上实现技术突破从而能够更加高效地通过一些诸如新闻、报道各种公开的资料进行信息处理,同时进行文本摘要方面的研究也是为了能更好的实现对敌对势力的舆情分析。

至于是什么敌对势力,自然是昔年无比强大的北极熊。

说起来这也是早期文本摘要编码的一个奇葩特征。

对中文这门使用人数相当多的语言基本没啥处理能力。

对俄文处理却几乎拥有和英文同等水平的高效性。

不管最初的目的是什么。

总之,在相当长的一段时间里涉及到文本摘要这方面的研究都相当受重视。

甚至在相当长的一段历史时期该领域的部分研究经费甚至直接是来自M国军费中的拨款。

后来随着间谍卫星等更高效获取情报的手段相继问世,M军方对这方面的研究的热情才逐渐被淡漠。

尽管如此,商业上对文本摘要的热情却几乎自始至终毫无动摇。

文本作为信息的重要载体,再怎么重视也不为过。

新世纪互联网的告诉发展,大量信息的涌现。

人们更是不得不重视。

对信息的研究越深入,我们就越能了解到这个世界。

文本摘要的深度探索,让我们对信息的掌控更强。

就林灰在文本摘要上所作的贡献而言。

说林灰改变了世界也不为过。

反正伊芙·卡莉不觉得这种说法有什么不对的地方。

涉及到具体领域,林灰所作的贡献在自然语言处理所做的贡献实在是同样很大。

相对于传统的抽取式文本摘要,生成式文本摘要的意义空前。

之所以说生成式文本摘要的意义空前,并不仅仅是因为这项技术在处理文本摘要上效率上更高。

当然生成式文本摘要能够拥有更高的处理文本的效率。

这个对于记者之类的相关使用人员来说效率的提高确实是很具有意义。

但这不是科研人员所关心的。

一个转动的更快的轮子相比于一个同样能转但转的较慢的轮子相比有价值。

但深究之下会发现其实价值也不大。

事实上伊芙·卡莉觉得生成式文本摘要最不起眼的内容就是其在效率方面的提升。

甚至可以说效率只是生成式文本摘要这项算法的外在表现而不是这一算法的真正内核。

通常意义上所说的自然语言处理(NLP)主要内容无非就是两部分。

一部分是NLU,另一部分是NLG。

前者指的是自然语言理解,后者指的是自然语言生成。

林灰搞定的生成式文本摘要算法在自然语言理解和自然语言生成此二者上都有极为突出的意义。

生成式文本摘要这项全新的文本摘要算法。

其相比于传统的抽取式摘要只能借助于原有的文本内容抽取而言,能直接“无中生有”的进行摘要生成。

这样的一种算法在自然语言理解方面自然是做到了前所未有的高度。

而且这也启发着在自然语言生成方面有可能实现新的突破。

自然语言生成更是一项极为有价值的方向。

自然语言生成更长远的未来可不仅仅是依靠文本生成文本。

理论上讲,当神经网络学习进展到一定地步的时候。

当输入内容不是文本的时候,也可以据此进行自然语言生成。

诚然如此的话,那么今后自然语言处理这方面会获得真正意义上的腾飞。

届时自然语言处理也会彻底摆脱现在一向圈地自萌的局面。

而神经网络学习发展到什么样的地步才可能实现新的突破呢?

伊芙·卡莉对林灰在论文补充内容中提到的深度学习印象极为深刻。

所有人都知道神经网络学习这方面为了使得模型更加高效就要更深。

可怎样更深入呢?

这是个问题。

现在世界里神经网络学习虽然很多人都冠以深度学习之名。

但其实伊芙·卡莉觉得这些都是不够“深”的。

其模型对应的效率什么的都差得远。

不知道林灰就深度学习这方面能够给出另一份全新的答案么?

林灰如果诚然能就深度学习这方面给出一份崭新且意义深刻的答案的话。

那么他将彻底推开那扇门。

门后将是一个崭新的世界。

至于门后那个世界是什么?

人工智能时代的彻底到来。

喜欢穿越:2014请大家收藏:(www.jubiquge.com)穿越:2014笔趣阁更新速度全网最快。

笔趣阁推荐阅读: 金牌私教超级旅游系统全知全能者蹭出个综艺男神完美家乡校花之无敌高手最强老妈我真是超级富二代一夜暴富被女总裁领养的大娱乐家重生之都市我为尊都市狼魂校园无敌仙尊相师大帝地产之王女神还是小可怜,忽悠她做老婆三界红包群神级龙帝荒原闲农从助理成为娱乐大亨文娱帝国我的女总裁小冤家痞子兵王俏总裁极品小老板超级人品系统超级游戏超神当铺试婚一个月,傲娇老婆的人设崩了随身仙园空间超级电子帝国跨界闲品店全球游戏之谁都想杀我爆装备奇幻房东我真的长生不老抢个红包去种田妙手天师我在地府当网红爱上女处长:一念翻身整座大山都是我的猎场万界淘宝商女总裁的修仙老公求求别让我社死家有贤婿明克街13号冒牌风水师我的冰山美女老婆花都神医重写肆意人生终极全才符宝
笔趣阁搜藏榜: 狗带吧青春大时代从1983开始都市僵尸狂少夜的命名术极品小财神第一序列我的冰山美女老婆如何炸掉月球风流青云路误惹军官,强娶霸宠我真没想躺赢啊脑海里有世界碎片的神豪港娱:从1985开始心理禁区创业从养老开始花都神医重生之彪悍媳妇最强军工大明星爱上我重写肆意人生平凡的亿万富翁重生之绝世天骄我家的猫会修仙九龙战神超级相师在都市超级位面银行人生得意无尽欢综艺为王超级英雄间谍派最强兵王在都市女总裁的贴身男司机大话重生之2003从被虐开始,如来教我躺赢秘籍风流高手都市纵横人在医院,救命钱被老婆买房山野情事女主从书里跑出来了怎么办全球冒险:文明入侵恶鬼保镖美女的贴身武医绝品强少绸鱼这个新人实在太强全民模拟:我有无数天赋来自棺材的你仙道文豪崛起大医凌然韩娱霸者便携式桃源逆转文娱:人生模拟器
笔趣阁最新小说: 四合院里的老中医百元求生:从潘家园捡漏开始带着爸妈去上班怪物食堂再启仙途热搜第一:叫你捡漏你开挂啊文娱:让你唱歌,你搁这作法?地窟求生:开局食物增幅三十倍我的金融帝国汽车公司?不,是国货之光我写的娱乐文被杨老板看到了娱乐:别联系了,真不熟浪在娱乐圈放弃留学,我打造了世界第一名校从重生开始合租我的夫妻关系竟能数据化韩娱之隔世斑斓首富后才知是反派四合院里的唯一老实人平行空间王牌特工虎胆神偷高圆寺的坏小子白眼狼重生之超级班长第一少爷逆天奇缘303室帅哥军团4无道无常快意逍遥娱乐圈黑幕:走台黑道教父都市天龙黑道偷天换日怒放的青春迷情美女总监重生之古董大亨幕后邪徒市长千金恋上我为兄弟活着都市神语者天才高手近身教师都市邪龙贴身护美高手大邪主欲望挣扎美女的王牌杀手逆天重生之花间猎狩